1绝缘层防护法
金属腐蚀是由于环境介质作用在金属表面产生电化学反应或化学反应,涂层对金属的作用是通过抑制上述反应而达到,具体来看,是基于下面三方面的作用:(1)屏蔽作用:许多涂层对酸、碱、盐等腐蚀介质显示化学惰性,且介电常数高,阻止了腐蚀电路的形成,因此金属表面涂覆漆膜后,把金属表面与环境隔开,起到了屏蔽腐蚀介质的作用。但必须指出,涂料用高聚物具有一定的透气性,并与其结构密切相关。(2)钝化缓释作用:借助涂料中的防锈颜料与金属表面反应,使其钝化或生成保护性的物质以提高涂层的保护作用,另外,许多油料在金属皂的催化作用下生成降解产物也能起到有机缓蚀剂的作用(3)电化学保护作用:涂料中使用电位比铁较低的金属为填料(如锌),会起到牺牲阳极的阴极保护作用,并且锌的大气腐蚀产物碱式碳酸锌比较稳定,又起到封闭、堵塞期末空隙的作用。
1.1防腐涂层的结构
在实际应用中,一种涂层往往不能很好的起到保护金属的作用,或不能同时满足防腐、耐候、美观等使用要求,因此大多在金属表面涂覆几种涂层,以组成一个整体系统共同发挥功效,这一涂层体系包括底漆,中间层,面漆,每层按需要分别涂刷一至数次,也有的仅是单层结构就同时满足了不同的使用要求,如粉末涂料。
1.2防腐涂层的选择
在选择防腐层的时候防腐涂层应具备以下基本性能:有效的电绝缘性;有效的隔水屏障性;涂敷于管道的方法不会对管道性能产生不利影响;涂敷于管道上的涂层缺陷最少;与管道表面有良好的附着力;能防止针孔随时间发展;能抵抗装卸、储存和安装时的损伤;能有效地保持绝缘电阻随时间恒定不变;抗剥离性能;抗化学介质破坏;补伤容易;物理性能保持能力强;对环境无毒;能防止地面储存和长距离运输过程不发生变化和降解。
目前国内外适用于长输管道的防腐蚀涂层主要有煤焦油瓷漆、PE二层结构、PE三层结构、熔结环氧粉末(FBE)、双层熔结环氧粉末(双层FBE)覆盖层等[4]。下面将各种防腐蚀材料的主要优缺点、国内外应用状况及评价简述如下:(1)煤焦油瓷漆具有绝缘性能好、吸水率低、耐细菌腐蚀和植物根茎穿透、国内材料充足及使用寿命长、价格低(约55~60 元/ m2) 等优点。主要缺点是机械强度较低,适宜温度范围窄,低温易变脆,生产施工过程中可能会逸出有毒气体,需要严格的烟雾处理措施。国外使用已有70多年历史,近年来因受环保的限制逐渐被其他覆盖层代替。我国已研制出达到国际标准的煤焦油瓷漆产品,分3 种型号,以适应不同的温度需要。(2) PE 两层结构 具有绝缘性能好、吸水率低、机械强度高、坚韧耐磨、耐酸碱盐和细菌腐蚀、耐温度变化、国内材料充足等优点,价格较低(约60~65 元/ m2 ) 。缺点是耐紫外线性能差,阳光下过久暴露易老化,与钢管表面结合力较差,抗阴极剥离性能差。PE 层的静电屏蔽作用不利于外加电流阴极保护。国外采用聚乙烯防腐蚀有40 多年历史,目前仍有一定的使用量,其中,在中小管径上的用量占第一位,中等管径应用上仅次于熔结环氧粉末。国内1985 年后广泛应用,到目前为止油田和各地中小管径采用此种覆盖层的防腐蚀管道已超过上万公里。(3) PE 三层结构 PE 三层结构防腐蚀层结合了高密度聚乙烯包覆、熔结环氧粉末的优点。它利用环氧粉末与钢管表面牢固结合,利用高密度聚乙烯耐机械损伤,两层之间特殊的胶层使三者形成分子键结合的复合结构,实现防蚀性能、机械性能的良好结合,是目前我国大型管道工程首选的涂层。PE 三层结构防腐蚀层从1995 年在库鄯线、陕京线应用以来,防蚀效果很好。但有人认为:PE 三层结构覆盖层破损后,容易形成静电屏蔽,阴极保护作用不能良好发挥。目前我国对此观点尚未重视。PE 三层结构防腐蚀层造价相对较高(约100 元/ m2) ,是其缺点之一。(4) 熔结环氧粉末(FBE)具有与钢管表面结合牢固、绝缘性能好、机械强度高、耐温度变化、耐化学腐蚀等优点,可适用于各种恶劣自然环境。主要缺点是耐紫外线性能差;由于覆盖层较薄(0.35~0. 50 mm) ,耐划伤和磕碰性能较厚覆盖层要差。国外从20 世纪60 年代开始应用于管道防腐蚀,发展很快,是目前国际管道防腐蚀上采用量最多的覆盖层。价格约在65~70 元/ m2。(5) 双层熔结环氧粉末(双层FBE)与PE三层结构类似,具有和PE三层相同的综合性能,机械性能尤其高,补口也用双层FBE ,相容性好,覆盖层表面光滑。另外可避免阴极屏蔽问题。
2阴极保护的两种方法
根据提供极化电流的方法不同,阴极保护可以分为牺牲阳极阴极保护和外加电流阴极保护两种,牺牲阳极法是用一种腐蚀电位比被保护金属腐蚀电位更负的金属或合金与被保护体组成电偶电池,依靠负电性金属不断腐蚀溶解产生的电流对被保护金属构成保护的方法,由于低电位金属所在电偶电池中作为阳极,偶接后其自身腐蚀速度增加,故被称作“牺牲阳极”。外加电流阴极保护是利用外部直流电源对被保护体提供阴极极化,实现对被保护体的保护方法。外部电源的负极与被保护体相连,正极接辅助阳极,辅助阳极的作用是为了构成阴极保护完整的回路。
牺牲阳极保护方法的主要特点是:1)不需要外加直流电源,适用于无电源地区和小规模、分散的保护对象;2)驱动电压低,输出功率低,保护电流小且不可调节,阳极有效保护距离小,使用范围受介质电阻率的限制,但保护电流的利用率较高,一般不会造成过保护,对邻近金属设施干扰小;3)阳极数量较多,电流分布比较均匀,但阳极重量大,会增加结构重量,且阴极保护的时间受牺牲阳极寿命的限制;4)系统牢固可靠,施工技术简单,单次投资费用低,不需要专人管理。
外加电流阴极保护方法的主要特点是:1)需要外部直流电源;2)驱动电压高,输出功率和保护电流大,能灵活调节,控制阴极保护电流,阳极有效保护半径大,因此在恶劣的腐蚀条件或高电阻率的环境中叶适用,但有可能造成过保护,也可能对附近金属设施造成干扰;3)阳极数量少,系统重量轻,结构重量增加不多,难溶和不溶性辅助阳极消耗低、寿命长、可作长期的阴极保护、但由于系统使用的阳极数量少,保护电流可能分布不均匀。4)在恶劣环境中,系统易受损伤,设备安装、施工、维护较复杂、一次投资费用高。因此,阴极保护方法的选择应根据供电条件、介质电阻率、所需保护电流的大小、运行过程中工艺条件变化情况、寿命要求、结构形状等决定,通常情况下,对无电源、介质电阻率低、条件变化不大、所需保护电流较小的小型系统,宜选用牺牲阳极保护;相反,对有电源、介质电阻率大、所需保护电流大、条件变化大、使用寿命长的大系统,应选用外加电流阴极保护,因此长输天然气管道适宜用外加电流阴极保护。
2.1阴极保护的参数
保护电位,是指通过阴极保护金属使金属结构达到完全保护或者有效保护所需达到的电位值,保护电位有时是个电位区间,人们习惯上将为达到阴极保护所诸极化电位中的最正的电位称为最小保护电位,而将最负的电位称作最大保护电位。如果被保护结构的电位太负,超过最大保护电位,不仅会造成电能的浪费,而且还可能由于被保护结构表面析出氢气,造成表面涂层严重剥落或导致金属氢脆,即出现过保护的情况,美国腐蚀工程师协会(NACE)在《埋地和水下金属管道外部腐蚀控制推荐规范》RP-01-69(1983)的标准中,对阴极保护准则做出了某些规定,对于天然水和土壤中的钢和铸铁构筑物,规定保护电位至少因为-0.85V(相对于饱和Cu/CuSO4参比电极,即SCSE),最大保护电位则根据环境而定,对于天然气管道而言一般应为-1.3V(相对于饱和Cu/CuSO4参比电极,即SCSE)。
|